
Polyspace® Code Prover™
Getting Started Guide

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Getting Started Guide
© COPYRIGHT 2013–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)
March 2016 Online Only Revised for Version 9.5 (Release 2016a)
September 2016 Online Only Revised for Version 9.6 (Release 2016b)
March 2017 Online Only Revised for Version 9.7 (Release 2017a)
September 2017 Online Only Revised for Version 9.8 (Release 2017b)
March 2018 Online Only Revised for Version 9.9 (Release 2018a)

Introduction to Polyspace Code Prover
1

Polyspace Code Prover Product Description 1-2
Key Features . 1-2

Getting Help . 1-3
Access Documentation . 1-3
Access Contextual Help . 1-3

Quick Start Guide for Polyspace Code Prover 1-5

Set Up a Polyspace Project
2

Compiler Requirements . 2-2

Set Up Polyspace Project . 2-3
Tutorial Overview . 2-3
What Is a Project? . 2-3
Prepare Project Folder . 2-3
Open Polyspace Code Prover . 2-4
Create Project . 2-4
Next steps . 2-6

v

Contents

Server Configuration for Remote Verification and
Polyspace Metrics

3
Set Up Polyspace Metrics . 3-2

Requirements for Polyspace Metrics . 3-2
Start Polyspace Metrics Server . 3-3
Configure Polyspace Preference . 3-4
Configure Web Server for HTTPS . 3-5
Change Web Server Port Number for Metrics Server 3-7

Set Up Server for Metrics and Remote Analysis 3-8
Requirements for Remote Analysis . 3-9
Start Server for Remote Analysis and Polyspace Metrics 3-10
Configure Polyspace Preferences . 3-11
Set Up Server for Multiple Polyspace Releases 3-13

Run a Verification
4

Run Verification . 4-2
Tutorial Overview . 4-2
Before You Start the Tutorial . 4-2
Prepare for Verification . 4-2
Run Remote Verification . 4-3
Run Local Verification . 4-5
Next steps . 4-6

Review Verification Results
5

Review Results . 5-2
Tutorial Overview . 5-2
Open Results . 5-2
Review Results . 5-3
Generate Report . 5-4

vi Contents

Next steps . 5-5

Check Compliance with Coding Rules
6

Find Coding Rule Violations . 6-2
Tutorial Overview . 6-2
Specify MISRA C Checking . 6-2
Review MISRA C Violations . 6-3

Install Polyspace Plugins
7

Install Polyspace Plugin for Simulink . 7-2

Install Polyspace Plugin for Eclipse . 7-4
Install Polyspace Plugin for Eclipse IDE 7-4
Uninstall Polyspace Plugin for Eclipse IDE 7-6

Verifying Code Generated from Simulink Models
8

Verify Code from a Simple Simulink Model 8-2
Create Simulink Model and Generate Code 8-2
Run Polyspace Verification . 8-4
View Results in Polyspace Code Prover 8-4
Trace Error to Simulink Model . 8-5
Specify Signal Ranges . 8-6
Verify Updated Model . 8-8

vii

Code Verification in IBM Rational Rhapsody
Environment

9
Verify Code in IBM Rational Rhapsody Environment 9-2

Code Verification Approach . 9-2
Adding Polyspace Profile to Model . 9-3
Accessing Polyspace Features . 9-3
Configuring Verification Options . 9-6
Running a Verification . 9-7
Viewing Polyspace Results . 9-7
Locating Faulty Code in Rhapsody Model 9-8
Template Configuration Files . 9-9

Using Bug Finder and Code Prover
10

Differences Between Polyspace Bug Finder and Polyspace Code
Prover Analysis . 10-2

How Bug Finder and Code Prover Complement Each
Other . 10-2

Workflow Using Both Bug Finder and Code Prover 10-8

viii Contents

Introduction to Polyspace Code
Prover

• “Polyspace Code Prover Product Description” on page 1-2
• “Getting Help” on page 1-3
• “Quick Start Guide for Polyspace Code Prover” on page 1-5

1

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace Code Prover™ is a sound static analysis tool that proves the absence of
overflow, divide-by-zero, out-of-bounds array access, and certain other run-time errors in
C and C++ source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses semantic analysis and abstract
interpretation based on formal methods to verify software interprocedural, control, and
data flow behavior. You can use it on handwritten code, generated code, or a combination
of the two. Each operation is color-coded to indicate whether it is free of run-time errors,
proven to fail, unreachable, or unproven.

Polyspace Code Prover also displays range information for variables and function return
values, and can prove which variables exceed specified range limits. Results can be
published to a dashboard to track quality metrics and ensure conformance with software
quality objectives. Polyspace Code Prover can be integrated into build systems for
automated verification.

Support for industry standards is available through IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features
• Proven absence of certain run-time errors in C and C++ code
• Color-coding of run-time errors directly in code
• Calculation of range information for variables and function return values
• Identification of variables that exceed specified range limits
• Quality metrics for tracking conformance with software quality objectives
• Web-based dashboard providing code metrics and quality status
• Guided review-checking process for classifying results and run-time error status
• Graphical display of variable reads and writes

1 Introduction to Polyspace Code Prover

1-2

Getting Help

In this section...
“Access Documentation” on page 1-3
“Access Contextual Help” on page 1-3

Polyspace provides documentation and contextual help in multiple locations to get you the
help you need.

Access Documentation
The full documentation is available in the Polyspace interface and its plug-ins. To access
the documentation:

• Polyspace interface — Select Help > Documentation.
• Simulink® plug-in — Select Code > Polyspace > Help.
• Eclipse™ plug-in — Select Polyspace > Help.
• IBM® Rational® Rhapsody® plug-in — Right-click on a package. From the context

menu, select Polyspace. In the Polyspace Verification dialog, select Help.

Access Contextual Help
To access contextual help for analysis options in the Polyspace interface or a Polyspace
plug-in:

1 In the Configuration pane, hover your cursor over an analysis option.
2 In the tooltip, select More Help.
3 Look in the Contextual Help pane to see more help for that option.

To access contextual help for Polyspace results from the Polyspace interface:

1 In the Results List pane, select a Polyspace check.
2

In the Result Details pane, select .
3 Look in the Contextual Help pane to see more help for that check.

 Getting Help

1-3

To access contextual help for Simulink configuration parameters, in the configuration
window, right click on the parameter name and select What’s This.

1 Introduction to Polyspace Code Prover

1-4

Quick Start Guide for Polyspace Code Prover
Polyspace® Code Prover™ is a sound static analysis tool that proves the absence of
overflow, divide-by-zero, out-of-bounds array access, and certain other run-time errors in
C and C++ source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses semantic analysis and abstract
interpretation based on formal methods to verify software interprocedural, control, and
data flow behavior. Each operation is color-coded to indicate whether it is free of run-time
errors, proven to fail, unreachable, or unproven.

The following steps describe how to run Polyspace on your source code. If you want to
skip the project setup and configuration steps:

1 Open the demo project. Select Help > Examples > Code_Prover_Example.psprj.
You see the results from a Polyspace run.

2 To see the demo project, select Window > Reset Layout > Project Setup.

Step 1: Set Up Project

In the Polyspace user interface, select File > New Project.

 Quick Start Guide for Polyspace Code Prover

1-5

To add source code for analysis, do one of the following:

• Copy the example files example.c and include.h from MATLAB_Install
\polyspace\examples\cxx\Code_Prover_Example\sources to a new folder.
Change the read-only status of the files. Add the folder to your project as both source
and include folder. MATLAB_Install is the location of your MATLAB installation such
as C:\Program Files\MATLAB\R2017a.

• Add your own source code to the project.

Step 2: Configure Project and Run Verification

On the Project Browser pane, select the node below the Configuration node in your
project.

The default analysis options appear on the Configuration pane. Retain the default
options or change them to your requirements. For example, to check for coding rule

1 Introduction to Polyspace Code Prover

1-6

violations, select Coding Rules & Code Metrics and specify your options. For more
information on an option, place your cursor on the option and select More Help.

Click the Run Code Prover button.

Step 3: Review Results

After verification, the results open on the Results List pane. From the grouping
dropdown, select None. Select each result to view the source code location on the
Source pane and further information about the result on the Result Details pane. For
more information about a result, on the Result Details pane, click the question mark
button.

 Quick Start Guide for Polyspace Code Prover

1-7

Review each result and determine whether you want to fix your code or add comments
justifying the result.

1 Introduction to Polyspace Code Prover

1-8

Set Up a Polyspace Project

• “Compiler Requirements” on page 2-2
• “Set Up Polyspace Project” on page 2-3

2

Compiler Requirements
Polyspace fully supports the most common compilers used to develop embedded
applications. If you compile your code with one of these compilers, you can run analysis
simply by specifying your compiler and target processor. See the full list of compilers on
the reference page for option Compiler (-compiler).

If you do not compile your code using a supported compiler, you can specify a generic
compiler. If you face compilation errors from compiler-specific language extensions, you
can explicitly define these extensions to work around the errors. Use the options
Preprocessor definitions (-D) and Command/script to apply to
preprocessed files (-post-preprocessing-command).

2 Set Up a Polyspace Project

2-2

Set Up Polyspace Project
In this section...
“Tutorial Overview” on page 2-3
“What Is a Project?” on page 2-3
“Prepare Project Folder” on page 2-3
“Open Polyspace Code Prover” on page 2-4
“Create Project” on page 2-4
“Next steps” on page 2-6

Tutorial Overview
In this tutorial, you create a new Polyspace Code Prover project to verify C code.

What Is a Project?
A Polyspace project consists of:

• Source folders and their files.
• Include folders.
• One or more modules. You run verification on the source files in each module. Each

module has the following folders:

• Source — Contains files used for verification.
• Configuration — Contains analysis options used for verification.
• Result — Contains results of verification.

Prepare Project Folder
In the following procedures, matlabroot is the MATLAB® installation folder, for
instance, C:\Program Files\MATLAB\R2017a.

1 Create a folder polyspace_project in a particular location, for example C:\.
2 Open polyspace_project and create subfolders:

 Set Up Polyspace Project

2-3

• sources
• includes

3 Copy example.c from matlabroot\polyspace\examples\cxx
\Code_Prover_Example\sources to polyspace_project\sources.

4 Copy include.h from matlabroot\polyspace\examples\cxx
\Code_Prover_Example\sources to polyspace_project\includes.

Open Polyspace Code Prover
• Open directly in your operating system.

• Windows®: From the matlabroot\polyspace\bin folder, double-click the
polyspace executable.

• Linux® or Mac: Run the following command:

/matlabroot/polyspace/bin/polyspace

• Open from MATLAB.

From the MATLAB Apps gallery, click the Polyspace Code Prover app.

Create Project
• “Create New Project” on page 2-4
• “Specify Source Files and Include Folders” on page 2-5

Create New Project

1 Select File > New Project.
2 In the Project – Properties dialog box:

• For Project name, enter polyspace_project.
• Clear the Use default location check box. To specify where your

polyspace_project folder is, click .
• Clear the boxes under Project Configuration.

For more information on the option Use template, see “Create Project Using
Configuration Template”.

2 Set Up a Polyspace Project

2-4

For more information on the option Create from build command, see “Add
Source Files for Analysis in Polyspace User Interface”.

3 Click Next.

Specify Source Files and Include Folders
1 Use the Browse button to select the sources folder that you created.
2 Click Add Source Folders, then click Next.
3 Use the Browse button to select the includes folder that you created.
4 Click Add Include Folders, then click Finish.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h>
and you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

You can see your project in the Project Browser.

 Set Up Polyspace Project

2-5

Next steps
1 “Run Verification” on page 4-2
2 “Review Results” on page 5-2
3 “Find Coding Rule Violations” on page 6-2

See Also

Related Examples
• “Add Source Files for Analysis in Polyspace User Interface”

2 Set Up a Polyspace Project

2-6

Server Configuration for Remote
Verification and Polyspace Metrics

• “Set Up Polyspace Metrics” on page 3-2
• “Set Up Server for Metrics and Remote Analysis” on page 3-8

3

Set Up Polyspace Metrics
In this section...
“Requirements for Polyspace Metrics” on page 3-2
“Start Polyspace Metrics Server” on page 3-3
“Configure Polyspace Preference” on page 3-4
“Configure Web Server for HTTPS” on page 3-5
“Change Web Server Port Number for Metrics Server” on page 3-7

This topic shows how to set up a Polyspace Web Metrics server to store results and
monitor software quality.

Requirements for Polyspace Metrics
You can use Polyspace Metrics to:

• Store verification and analysis results.
• Evaluate and monitor software quality metrics.

This table lists the requirements for Polyspace Metrics.

Task Location Requirements
Project configuration
and uploads to
server

Client node • MATLAB
• Polyspace Bug Finder™ or Polyspace Code Prover

Polyspace Metrics
service

Network
server or
head node
of MATLAB
Distributed
Computing
Server™
cluster

• MATLAB
• Polyspace Bug Finder or Polyspace Code Prover

Activation is not required for the Polyspace Metrics
service

3 Server Configuration for Remote Verification and Polyspace Metrics

3-2

Task Location Requirements
Downloading
complete results
from Polyspace
Metrics

Client node
or a
network
computer

• MATLAB
• Polyspace Bug Finder or Polyspace Code Prover
• Access to Polyspace Metrics server

Viewing results
summary from
Polyspace Metrics

A network
computer

Access to Polyspace Metrics server.

You cannot merge two different Polyspace metrics databases. However, if you install a
newer version of Polyspace on top of an older version, Polyspace Metrics automatically
updates the database to the newest version.

Start Polyspace Metrics Server
This section shows you how to start the host server for Polyspace Metrics. After you
complete this step, you must also configure the client-side settings on page 3-4 so that
the Polyspace interface can interact with the Metrics server.

1 From the Polyspace environment, select Metrics > Metrics and Remote Server
Settings.

Note In Linux, you need root privileges to start the Polyspace Metrics server.
2 Under Polyspace Metrics Settings, specify:

• User name used to start the service — Your user name.
• Password — Your password (Windows only).
• Communication port — Polyspace communication port number (default 12427).

This number must be the same as the communication port number specified in the
Polyspace Interface preferences. See “Configure Polyspace Preference” on page 3-
4.

• Folder where analysis data will be stored — Results repository for Polyspace
Metrics server.

3 If you have installed MATLAB Distributed Computing Server, clear the Start the
Polyspace mdce service without security level check box.

For information about starting your remote cluster service, see “Set Up Server for
Metrics and Remote Analysis” on page 3-8.

 Set Up Polyspace Metrics

3-3

4 To start the Polyspace Metrics server, click Start Daemon.

Note If you are using a Mac as your Polyspace Metrics server, when you restart the
machine you must restart the Polyspace server daemon.

The software stores the information that you specify through the Metrics and Remote
Server Settings window in the following file:

• On a Windows system, \%APPDATA%\Polyspace_RLDatas\polyspace.conf
\polyspace.conf.

• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preference
Once you have set up your Polyspace metrics server, you must set the client-side settings
so that the Polyspace interface can communicate with your Metrics server.

1 Select Tools > Preferences.
2 Click the Server Configuration tab.
3 Under the Polyspace Metrics server configuration section:

a If you want Polyspace to detect a server on the network that uses port 12427
(default port number), click Automatically detect the Polyspace Metrics
Server.

b If you use a different port number for your Metrics server or you want to specify
the server name, click Use the following server and port. Fill in your server
name or IP address, and communication port number.

You must specify the same communication port number for all clients that use
the Polyspace Metrics service.

4 Under the Polyspace Metrics web interface configuration section:

a Specify a Port used to download results, default is 12428. If you change this
port number, you must also change it in on the server side.

b Specify which protocol to use HTTP or HTTPS. If you select HTTPS for your web
protocol, there are additional steps to set up the Metrics web server for HTTPS
on page 3-5.

c Specify a web server port number for your chosen protocol. Default port
numbers are:

3 Server Configuration for Remote Verification and Polyspace Metrics

3-4

• HTTP — 8080
• HTTPS — 8443

If you change the port number from the default, you must configure the same
port number for the Polyspace Metrics server. See “Change Web Server Port
Number for Metrics Server” on page 3-7.

5 Under the Upload and download settings section:

• Upload settings — After you review results from the Metrics repository, you can
upload your comments and justifications back to the repository using Metrics >
Upload to Metrics.

If you want Polyspace to automatically upload your justifications to Polyspace
Metrics when you save, select Upload justifications automatically in the
Polyspace Metrics repository....

• Download settings — In Polyspace Metrics, when you click an item to view,
Polyspace downloads your results and opens them in the Polyspace environment.
Select where to download your Polyspace Metrics results, either:

• To the project folder, or, if a project does not exist, a default folder.
• Ask every time where to download results.

To view Polyspace Metrics, in the address bar of your web browser, enter:

protocol://ServerName:WSPN

• protocol is http or https.
• ServerName is the name or IP address of your Polyspace Metrics server.
• WSPN is the web server port number, the default is 8080 or 8443.

Configure Web Server for HTTPS
By default, the data transfer between Polyspace Code Prover and the Polyspace Metrics
web interface is not encrypted. You can enable HTTPS for the web protocol, which
encrypts the data transfer. To set up HTTPS, you must change the server configuration
and set up a keystore for the HTTPS certificate.

Before you start the following procedure, you must complete “Start Polyspace Metrics
Server” on page 3-3 and “Configure Polyspace Preference” on page 3-4.

 Set Up Polyspace Metrics

3-5

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics and Remote Server Settings dialog box. Run the following
command:

MATLAB_Install\polyspace\bin\polyspace-server-settings.exe
2 Click Stop Daemon. The software stops the mdce and Polyspace Metrics services.

Now, you can make the changes required for HTTPS.
3 Open the file metricsRootFolder\tomcat\conf\server.xml in a text editor.

Here, metricsRootFolder is the name that you specified for Folder where
analysis data will be stored. Look for the following text:

<!-
 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>
->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.
b In the Metrics and Remote Server Settings dialog box, restart the daemon by

clicking Start Daemon.
c Click Stop Daemon to stop the services again so that you can finish setting up

the server for HTTPS.

The conf folder is regenerated, including the server.xml file. The file now contains
the text required to configure the HTTPS web server.

4 Follow the commented-out instructions in server.xml to create a keystore for the
HTTPS certificate.

5 In the Metrics and Remote Server Settings dialog box, to restart the Polyspace
Metrics service with the changes, click Start Daemon.

To view Polyspace Metrics, in the address bar of your web browser, enter:

https://ServerName:WSPN

• ServerName is the name or IP address of the Polyspace Metrics server.
• WSPN is the web server port number.

3 Server Configuration for Remote Verification and Polyspace Metrics

3-6

Change Web Server Port Number for Metrics Server
If you change or specify a non-default value for the web server port number of your
Polyspace Code Prover client, you must manually configure the same value for your
Polyspace Metrics server.

1 Select Metrics > Metrics and Remote Server Settings.
2 In the Metrics and Remote Server Settings dialog box, select Stop Daemon to stop

the Polyspace Metrics server daemon.
3 In metricsRootFolder\tomcat\conf\server.xml, edit the port attribute of the

Connector element for your web server protocol. Here, metricsRootFolder is the
name that you specified for Folder where analysis data will be stored when
setting up Polyspace Metrics.

• For HTTP:

<Connector port="8080"/>

• For HTTPS:

 <Connector port="8443" SSLEnabled="true" scheme="https"
 secure="true" clientAuth="false" sslProtocol="TLS"
 keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

4 In the same file, edit the port attribute of the Server element for your web server
protocol.

<Server port="8005" shutdown="SHUTDOWN">
5 In the Metrics and Remote Server Settings dialog box, select Start Daemon to

restart the server with the new port numbers.
6 On the Polyspace toolbar, select Tools > Preferences.
7 In the Server Configuration tab, change the Web server port number to match

your new value for the port attribute in the Connector element.

See Also

Related Examples
• “Generate Code Quality Metrics”

 See Also

3-7

Set Up Server for Metrics and Remote Analysis
In this section...
“Requirements for Remote Analysis” on page 3-9
“Start Server for Remote Analysis and Polyspace Metrics” on page 3-10
“Configure Polyspace Preferences” on page 3-11
“Set Up Server for Multiple Polyspace Releases” on page 3-13

You can perform a Polyspace analysis locally on your desktop or on a remote server. This
topic shows how to set up Polyspace on a server for remote batch analysis.

Use these rules to determine whether to opt for remote or local analysis.

Type When to Use
Remote batch Source files are large (more than 800 lines of code including

comments), and execution time of analysis is long.
Local Source files are small, and execution time of analysis is short.

With both local and remote analysis, you can upload your results to the Polyspace Metrics
web interface or view them directly on your desktop application. For more information
about setting up Polyspace Metrics, see “Set Up Polyspace Metrics” on page 3-2.

The following figure shows a network that consists of a MATLAB Distributed Computing
Server cluster and a Parallel Computing Toolbox™ client. Polyspace Code Prover and
Polyspace Bug Finder are installed on the head node and client nodes.

3 Server Configuration for Remote Verification and Polyspace Metrics

3-8

To set up remote analysis:

1 Configure the head node with the Metrics and Remote Server Settings dialog box.
See, “Start Server for Remote Analysis and Polyspace Metrics” on page 3-10.

2 Configure the client node through the Polyspace environment preferences. See,
“Configure Polyspace Preferences” on page 3-11.

Requirements for Remote Analysis
The following table lists the requirements for remote analysis.

Task Location Requirements
Project configuration
and job submission

Client node • MATLAB
• Parallel Computing Toolbox
• Polyspace Bug Finder or Polyspace Code Prover

(whichever product you want to run)
Remote analysis Head node

of cluster
• MATLAB Distributed Computing Server
• Polyspace Bug Finder
• Polyspace Code Prover (if you want to run Code

Prover)

 Set Up Server for Metrics and Remote Analysis

3-9

For information about setting up a computer cluster, see “Install Products and Choose
Cluster Configuration” (MATLAB Distributed Computing Server).

Start Server for Remote Analysis and Polyspace Metrics
This procedure describes how to set up a MATLAB Distributed Computing Server head
node that is also the Polyspace Metrics server. If you do not want to set up Polyspace
Metrics, use the MATLAB Distributed Computing Server Admin Center to set up a server
for your remote analyses. See “Install Products and Choose Cluster Configuration”
(MATLAB Distributed Computing Server).

1 Select Metrics > Metrics and Remote Server Settings.

Note In Linux, you need root privileges to start the Polyspace Metrics server.
2 Under Polyspace Metrics Settings, specify:

• User name used to start the service — Your user name.
• Password — Your password (Windows only).
• Communication port — Polyspace communication port number (default 12427).

This number must be the same as the communication port number specified on
the Polyspace Preferences > Server Configuration tab.

• Folder where analysis data will be stored — Results repository for Polyspace
Metrics server.

3 To configure the Polyspace Metrics server as the MATLAB Distributed Computing
Server head node, select Start the Polyspace mdce service without security
level.

The mdce service, which is required to manage the MJS, runs on the MJS host
computer with security level 0. At level 0, jobs are associated with the default user
name of the user. A login or password is not required to manage and see these jobs.

If you want to require authentication to use the remote server, use the MATLAB
Distributed Computing Server Admin Center. For more information about setting up
security levels, see “Set MJS Cluster Security” (MATLAB Distributed Computing
Server).

Under Start the Polyspace mdce service without security level, you see the
following additional options:

3 Server Configuration for Remote Verification and Polyspace Metrics

3-10

• Mdce service port — 27350.

This option specifies the port on which you connect to the MJS server. If you
change this number, you must change it on both the server and client side. On the
client side, when you specify the job scheduler host name (Tools > Preferences
and then Server Configuration), specify the port using the notation
schedulerName:portNumber. For instance, myJobScheduler:27400. See
“Verify Network Communications for Cluster Discovery” (MATLAB Distributed
Computing Server).

• Use secure communication – Not selected by default

By default, communication between the job manager and workers is not
encrypted. To make the connection more secure, you can select this option to
encrypt communications. Alternatively, you can increase the security level of your
MJS server. See “Set MJS Cluster Security” (MATLAB Distributed Computing
Server).

4 To start the Polyspace Metrics server and mdce service, click Start Daemon.

Note If you are using a Mac as your Polyspace Metrics server, when you restart the
machine you must restart the Polyspace server daemon.

The software stores the information that you specify through the Metrics and Remote
Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf
• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preferences
1 Select Tools > Preferences.
2 Click the Server Configuration tab.
3 Under MATLAB Distributed Computing Server cluster configuration:

a In the Job scheduler host name field, specify the computer for the head node
of the cluster. This computer hosts the MATLAB job scheduler (MJS).

b Due to network setting, the job manager may be unable to connect back to your
local computer. If this is the case, enter the IP address of the client computer in
the Localhost IP address field.

 Set Up Server for Metrics and Remote Analysis

3-11

To retrieve your IP address:

• Windows

i Open Control Panel > Network and Sharing Center.
ii Select your active network.
iii In the Status window, click Details. Your IP address is listed under IPv4

address.
• Linux — Run the ifconfig command and find the inet addr corresponding

to your network connection.
• Mac — Open System Preferences > Network.

If required, you can configure additional options for the MJS host through the
MATLAB Distributed Computing Server Admin Center. See “Configure for an MJS”
(MATLAB Distributed Computing Server).

4 Under the Polyspace Metrics server configuration section:

a If you want Polyspace to detect a server on the network that uses port 12427
(default port number), click Automatically detect the Polyspace Metrics
Server.

b If you use a different port number for your Metrics server or you want to specify
the server name, click Use the following server and port. Fill in your server
name or IP address, and communication port number.

You must specify the same communication port number for all clients that use
the Polyspace Metrics service.

5 Under the Polyspace Metrics web interface configuration section:

a Specify a Port used to download results, default is 12428. If you change this
port number, you must also change it in on the server side.

b Specify which protocol to use HTTP or HTTPS. If you select HTTPS for your web
protocol, there are additional steps to set up the Metrics web server for HTTPS
on page 3-5.

c Specify a web server port number for your chosen protocol. Default port
numbers are:

• HTTP — 8080
• HTTPS — 8443

3 Server Configuration for Remote Verification and Polyspace Metrics

3-12

If you change the port number from the default, you must configure the same
port number for the Polyspace Metrics server. See “Change Web Server Port
Number for Metrics Server” on page 3-7.

6 Under the Upload and download settings section:

• Upload settings — After you review results from the Metrics repository, you can
upload your comments and justifications back to the repository using Metrics >
Upload to Metrics.

If you want Polyspace to automatically upload your justifications to Polyspace
Metrics when you save, select Upload justifications automatically in the
Polyspace Metrics repository.

• Download settings — In Polyspace Metrics, when you click an item to view,
Polyspace downloads your results and opens them in the Polyspace environment.
Select where to download your Polyspace Metrics results, either:

• To the project folder, or, if a project does not exist, a default folder.
• Ask every time where to download results.

Set Up Server for Multiple Polyspace Releases
You can run jobs from multiple releases of Polyspace (for instance, R2016a and R2016b)
on the same server.

• Install both releases of Polyspace on the server, along with the later release of
MATLAB Distributed Computing Server.

• Edit the file mdce_def.bat or mdce_def.sh (located in matlabroottoolbox
\distcomp\bin\) to refer to the earlier release. For instance, to refer to a R2016a
release, add this line.

set MDCS_ADDITIONAL_MATLABROOTS=C:\Program Files\MATLAB\R2016a

Once you start the Job Scheduler on the server, from your client nodes, you can submit
jobs from both Polyspace releases to the same cluster. For more information, see “Install
Products and Choose Cluster Configuration” (MATLAB Distributed Computing Server).

 Set Up Server for Metrics and Remote Analysis

3-13

See Also

Related Examples
• “Set Up Polyspace Metrics” on page 3-2
• “Run Polyspace Analysis on Remote Clusters”
• “Job Manager Cannot Write to Database”

3 Server Configuration for Remote Verification and Polyspace Metrics

3-14

Run a Verification

4

Run Verification

In this section...
“Tutorial Overview” on page 4-2
“Before You Start the Tutorial” on page 4-2
“Prepare for Verification” on page 4-2
“Run Remote Verification” on page 4-3
“Run Local Verification” on page 4-5
“Next steps” on page 4-6

Tutorial Overview
In this tutorial, you run verification on your source code. Perform the steps outlined for
remote verification if you want to perform verification on another machine. Otherwise,
perform the steps outlined for local verification.

Before You Start the Tutorial
Before you start, you must:

• Complete “Set Up Polyspace Project” on page 2-3. You use the polyspace_project
folder and the polyspace_project.psprj file in this tutorial.

• “Set Up Server for Metrics and Remote Analysis” on page 3-8 for remote verification
and “Set Up Polyspace Metrics” on page 3-2 for Polyspace Metrics.

Prepare for Verification
If polyspace_project.psprj is not already open in the Project Browser, then:

1 Select File > Open.
2 In the Open File dialog box, navigate to polyspace_project.
3 Select the project file polyspace_project.
4 Click Open.

4 Run a Verification

4-2

Run Remote Verification
• “Start Verification” on page 4-3
• “Monitor Progress” on page 4-5
• “Stop Verification” on page 4-5

Start Verification

Before you start remote verification, you must perform a one-time setup. See “Set Up
Server for Metrics and Remote Analysis” on page 3-8.

1 On the Project Browser pane, select the configuration polyspace_project in
Module_1.

2 On the Configuration pane, select Run Settings.
3 Select Run Code Prover analysis on a remote cluster and Upload results to

Polyspace Metrics.
4 If you do not see the Run Code Prover button on the toolbar, select Code Prover as

follows.

 Run Verification

4-3

5 On the toolbar, click Run Code Prover.

The following happens:

a On the local host computer, Polyspace Code Prover compiles your code.
b The Parallel Computing Toolbox then submits the verification to the MATLAB Job

Scheduler on the head node of the MATLAB Distributed Computing Server
cluster.

Note If you see the message Verification process failed, click OK. For more
information on troubleshooting remote verification errors, see “Polyspace Cannot Find the
Server”.

4 Run a Verification

4-4

Monitor Progress

To monitor the progress of a remote verification:

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification.
3 Select View Log File.

Stop Verification

To stop a remote verification:

1 Select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, right-click your verification.
3 Select Remove From Queue.

Run Local Verification
• “Start Verification” on page 4-5
• “Monitor Progress” on page 4-5
• “Stop Verification” on page 4-6

Start Verification

To start a verification on your local computer:

1 In the Project Browser, select the configuration polyspace_project in Module_1.
2 On the Configuration pane, select Run Settings. Clear Run Code Prover analysis

on a remote cluster if it is selected.
3 On the toolbar, click Run Code Prover.

If the verification fails, see “Troubleshooting in Polyspace Code Prover”. For an
introduction to why verification might fail in the compilation phase, see “Troubleshoot
Compilation and Linking Errors”.

Monitor Progress

To monitor the progress of a local verification, on the Output Summary pane, use the
following tabs:

 Run Verification

4-5

• Output Summary
• Run Log

If this window is not visible by default, select Window > Show/Hide View > Run
Log.

When the verification is complete, you see:

• Results on the Results List pane.
• Statistics, such as Code covered by verification and Check distribution on the

Dashboard pane.

Stop Verification

To stop a local verification:

1
On the toolbar, click .

A warning dialog box opens.
2 Click Yes.

The verification stops. If you restart the verification, it starts from the beginning.

Next steps
1 “Review Results” on page 5-2
2 “Find Coding Rule Violations” on page 6-2

See Also

More About
• “Run Polyspace Analysis on Desktop”
• “Run Polyspace Analysis from Command Line”
• “Run Polyspace Analysis by Using MATLAB Scripts”
• “Run Polyspace Analysis on Remote Clusters”

4 Run a Verification

4-6

• “Run Polyspace Analysis on Remote Clusters Using Scripts”

 See Also

4-7

Review Verification Results

5

Review Results
In this section...
“Tutorial Overview” on page 5-2
“Open Results” on page 5-2
“Review Results” on page 5-3
“Generate Report” on page 5-4
“Next steps” on page 5-5

Tutorial Overview
In this tutorial, you explore the results of verifying example.c. Before starting this
tutorial, complete “Run Verification” on page 4-2.

Open Results
• “Remote Verification” on page 5-2
• “Local Verification” on page 5-2

Remote Verification

To open results from a remote verification:

1 Select Metrics > Open Metrics.

Alternatively, you can enter the remote address directly in a web browser. For more
information, see “View Code Quality Metrics”.

2 Click the Project cell of your verification.

You can see a summary of your project.
3 On the Summary tab, click the 1.0 cell in the Verification column.

Your results are downloaded into the user interface.

Local Verification

After verification, the results open automatically.

5 Review Verification Results

5-2

Review Results
Polyspace performs checks on each operation in your code. The software reports whether
a check is green, red, orange or gray.

Check color Indicates
Red The code operation fails the check on every execution path.
Green The code operation passes the check on every execution path.
Orange The code operation fails the check on some execution paths.
Gray The code operation is unreachable from entry-point functions.

1 On the Results List pane, from the list, select File.

The checks are grouped by file. Within each file, the checks are grouped by function.
2 Expand the following function names and select a check in the function. The

corresponding line of code on the Source pane appears highlighted. Further
information about the check appears on the Result Details pane.

Function Check Source Code
Appearance

Reason

Unreachable_Code Gray
Unreachable
code

The code within
braces starting
from line 197 is
gray.

x is greater than 0.
So the if statement
branch cannot be
reached.

Square_Root Red Invalid
use of
standard
library routine

The function sqrt
on line 182 is red.

beta is less than
0.75. So the
argument to sqrt
is always negative.

Non_Infinite_Loo
p

First green
Overflow

The + sign on line
76 is green.

When y is too large,
the while loop
terminates. So the
operation x=x+2
never overflows.

 Review Results

5-3

Function Check Source Code
Appearance

Reason

Recursion Orange
Division by
Zero

The / sign on line
135 is orange.

*depth can be less
than zero.
Therefore, at some
level in the
recursion, the
denominator can be
zero.

3 To find further information about a check, do one of the following:

• Place your cursor on the check in the Source pane. View the tooltip.

Use the variable range information in the tooltips to trace the data flow.
•

Click the button on the Result Details pane. You can see a brief description
of the check type, code examples and additional guidance on how to review that
check type.

4 Filter Illegally dereferenced pointer checks. To do this, on the Results List pane:

a Click on the Check column header.
b From the drop-down list, clear All and select Illegally dereferenced pointer.

The Results List pane displays only the Illegally dereferenced pointer checks.
5 On the Results List pane, select the red Illegally dereferenced pointer check in

the function Pointer_Arithmetic. Enter the following review information in the
rightmost columns.

Column Action
Severity High
Status To fix
Comment p points outside array

Generate Report
To generate a verification report:

5 Review Verification Results

5-4

1 If your verification results are not already open, open them.
2 Select Reporting > Run Report.

3 In the Select Reports section, select Developer.
4 For Output folder, select C:\polyspace_project

\Module_1\Result_1\Polyspace-Doc.
5 For Output format, select PDF .
6 Click Run Report.

The software creates the specified report and opens it.

Next steps
“Find Coding Rule Violations” on page 6-2

 Review Results

5-5

See Also

Related Examples
• “Interpret Polyspace Code Prover Results”

5 Review Verification Results

5-6

Check Compliance with Coding
Rules

6

Find Coding Rule Violations

In this section...
“Tutorial Overview” on page 6-2
“Specify MISRA C Checking” on page 6-2
“Review MISRA C Violations” on page 6-3

Tutorial Overview
In this tutorial, you analyze code to demonstrate compliance with established coding
standards such as MISRA C 2004.

Using these rules during coding:

• Helps reduce amount of unproven code in your verification results.
• Improves the quality of your code.

Before you start, you must “Set Up Polyspace Project” on page 2-3.

Specify MISRA C Checking
To set the MISRA C checking option:

1 On the Project Browser, select the configuration polyspace_project in Module_1.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select Check

MISRA C:2004.
3 From the corresponding drop-down list, select custom.
4 Click Edit. The New File dialog box opens, displaying a table of rules.
5 In the New File dialog box, specify the rules to check.

a Clear the MISRA C:2004 rules check box.
b Select the check boxes for the following rules.

6 Check Compliance with Coding Rules

6-2

Rule Number Rule description
16.3 Identifiers shall be given for all of

the parameters in a function
prototype declaration.

17.4 Array indexing shall be the only
allowed form of pointer arithmetic.

Click OK. Enter a name and save the file.
6 On the toolbar, click Run Code Prover.

After verification and coding rules checking, the results open automatically. If you
have previous results on the Results List pane, you are prompted whether you want
to open your new results. Click OK.

You can open your previous results from the Project Browser pane.

Review MISRA C Violations
To examine the MISRA C violations:

 Find Coding Rule Violations

6-3

1 On the Results List pane, from the list, select Family.

The MISRA C:2004 violations appear as a separate group.
2 Expand the nodes and select a coding-rule violation. You see the following.

Pane Result
Source The line containing the rule violation is

highlighted.
Result Details The following information is displayed:

• Description of violated rule.
• File and function where the rule

violation appears.

Click the button. You can see a
rationale for the rule. For certain rules,
you can see additional code examples
displaying violations of the rule.

3 On the Source pane, right-click the highlighted code. Select Open Editor.

The example.c file opens on the Code Editor tab. You can also use an external text
editor. Select Tools > Preferences and specify an external editor on the Editors tab.

4 Fix the MISRA® violation and rerun the verification. The coding rule violation no
longer appears in the results.

See Also

More About
• “Check for Coding Rule Violations”

6 Check Compliance with Coding Rules

6-4

Install Polyspace Plugins

7

Install Polyspace Plugin for Simulink
By default, when you install Polyspace R2013b or later, the Simulink plugin is installed
and connected to MATLAB.

If you model on a previous version of Simulink and MATLAB, you can also connect the
Polyspace plugin on this previous version. That way you use the latest analysis software
with your preferred version of Embedded Coder® or TargetLink®. The Simulink plugin
supports the four previous releases of MATLAB. For example, the R2017b version of the
Polyspace plugin supports MATLAB versions R2015b through R2017b.

If you use a cross-version of Polyspace and MATLAB, local batch analyses can only be
submitted from the Polyspace environment or using the pslinkrun command.

Note To install a newer version of Polyspace on MATLAB R2013b or later, you must
install MATLAB without the corresponding version of Polyspace.

1 Using an account with read/write privileges, open the older version of MATLAB.
2 Use the ver command to make sure you do not have a previous version of Polyspace

installed. See preceding note.
3 Change your Current Folder to

matlabroot\toolbox\polyspace\pslink\pslink

matlabroot is the version of Polyspace you want to connect, for example, C:
\Program Files\MATLAB\R2017b.

4 Connect the new version of Polyspace by running the command
pslinksetup('install').

See Also

Related Examples
• “Verify Code from a Simple Simulink Model” on page 8-2

7 Install Polyspace Plugins

7-2

More About
• “Troubleshoot Navigation from Code to Model”

 See Also

7-3

Install Polyspace Plugin for Eclipse
This topic shows how to install or uninstall the Polyspace plugin for Eclipse.

Install Polyspace Plugin for Eclipse IDE
The Polyspace plugin is supported for Eclipse versions 4.3, 4.4, and 4.5. You can install
the Polyspace plugin only after you:

• Install and set up Eclipse Integrated Development Environment (IDE). For more
information, see the Eclipse documentation at www.eclipse.org.

• Install Java® 7. See Java documentation at www.java.com.

If you run into issues because of incompatible Java versions, see “Eclipse Java Version
Incompatible with Polyspace Plug-in”.

• Uninstall any previous Polyspace plugins. For more information, see “Uninstall
Polyspace Plugin for Eclipse IDE” on page 7-6.

To install the Polyspace plugin:

1 From the Eclipse editor, select Help > Install New Software. The Install wizard
opens, displaying the Available Software page.

2 Click Add to open the Add Repository dialog box.
3 In the Name field, specify a name for your Polyspace site, for example,

Polyspace_Eclipse_PlugIn.
4 Click Local, to open the Browse for Folder dialog box.
5 Navigate to the MATLAB_Install\polyspace\plugin\eclipse folder. Then click

OK.

MATLAB_Install is the installation folder for the Polyspace product.
6 Click OK to close the Add Repository dialog box.
7 On the Available Software page, select Polyspace Plugin for Eclipse.

7 Install Polyspace Plugins

7-4

http://www.eclipse.org/
http://www.java.com

8 Click Next.
9 On the Install Details page, click Next.
10 On the Review Licenses page, review and accept the license agreement. Then click

Finish.

Once you install the plugin, in the Eclipse editor, you’ll see:

• A Polyspace menu
• A Polyspace Run - Code Prover, Results List - Code Prover, and Result Details

view.

 Install Polyspace Plugin for Eclipse

7-5

Uninstall Polyspace Plugin for Eclipse IDE
Before installing a new Polyspace plugin, you must uninstall any previous Polyspace
plugins:

1 In Eclipse, select Help > About Eclipse.
2 Select Installation Details.
3 Select the Polyspace plugin and select Uninstall.

Follow the uninstall wizard to remove the Polyspace plugin. You must restart Eclipse
for changes to take effect.

See Also

More About
• “Run Polyspace Analysis in Eclipse”

7 Install Polyspace Plugins

7-6

Verifying Code Generated from
Simulink Models

8

Verify Code from a Simple Simulink Model

In this section...
“Create Simulink Model and Generate Code” on page 8-2
“Run Polyspace Verification” on page 8-4
“View Results in Polyspace Code Prover” on page 8-4
“Trace Error to Simulink Model” on page 8-5
“Specify Signal Ranges” on page 8-6
“Verify Updated Model” on page 8-8

Create Simulink Model and Generate Code
To create a simple Simulink model and generate code:

1 Open MATLAB. Then start Simulink software.
2 Construct the following model.

3 Select File > Save. Then name the model my_first_model.
4 Open the configuration parameters for the model and specify the following

configuration parameters.

8 Verifying Code Generated from Simulink Models

8-2

Solver

Option User Action
Type Select Fixed-step.
Solver Select discrete (no continuous

states).

Code Generation

Option User Action
System target file Enter ert.tlc for Embedded Coder.

Code Generation > Optimization

Option User Action
Default parameter behavior Select Inlined.
Remove root level I/O zero
initialization

Select the box.

Code Generation > Report

Option User Action
Create code-generation report Select the box.

Code Generation > Templates

Option User Action
Generate an example main program Clear the box.

Code Generation > Interface

Option User Action
Remove error status field in real-
time model data structure

Select the box.

Also, in the All parameters tab, search for the parameter Use memset to initialize
floats and doubles to 0.0, clear the box, then search for the parameter Code-to-
model, and select the box.

 Verify Code from a Simple Simulink Model

8-3

For more information, see “Recommended Model Configuration Parameters for
Polyspace Analysis”.

5 To generate code, from the Simulink model window, select Code > C/C++ Code >
Build Model.

Run Polyspace Verification
1 From the Simulink model window, select Code > Polyspace > Verify Code

Generated for > Model.

The verification starts, and you see messages in the MATLAB Command Window.
Starting Polyspace verification for Embedded Coder
Creating results folder results_my_first_model for system my_first_model
Parameters used for code verification:
 System : my_first_model
 Results Folder : C:\results_my_first_model
 Additional Files : 0
 Verifier settings : PrjConfig
 DRS input mode : DesignMinMax
 DRS parameter mode : None
 DRS output mode : None
 Model Reference Depth : Current model only
 Model by Model : 0

...

2 Follow the progress of the verification in the MATLAB Command window.

Note Verification of this model takes about a minute. A 3,000 block model will take
approximately one hour to verify, or about 15 minutes for each 2,000 lines of generated
code.

View Results in Polyspace Code Prover
When the verification is complete, you can view the results using the Polyspace Code
Prover interface.

1 From the Simulink model window, select Code > Polyspace > Open Results > For
Generated Code.

After a few seconds, Polyspace Code Prover opens.
2 On the Results List pane, from the list, select None.

8 Verifying Code Generated from Simulink Models

8-4

3 Select the orange Overflow check.

The Result Details pane shows information about the orange check, and the Source
pane shows the source code containing the orange check.

This orange check shows a potential overflow issue when multiplying the signals from
the inports In1 and In2. Polyspace considers that the signal values are full range. So
multiplying the two signals can result in an overflow.

Trace Error to Simulink Model
To fix this overflow issue, you must return to the Simulink model.

To trace the error to your model:

1 Click the blue underlined link (<Root>/Product) immediately before the check in
the Source pane. The Simulink model opens, highlighting the block with the error.

2 Examine the model. The highlighted block multiplies two full-range signals, which
could result in an overflow.

3 To investigate a check, sometimes you have to trace an instance of a variable in
generated code back to your model.

Right-click an identifier and select Go To Model. The model shows the
corresponding block highlighted in blue. If the block is in a subsystem, both the
subsystem and the block are highlighted in blue.

The verification has identified a potential bug. This could be a flaw in:

 Verify Code from a Simple Simulink Model

8-5

• Design — If the model should be robust for the full signal range, then the issue is a
design flaw. In this case, you must change the model to accommodate the full signal
range. For example, you could saturate the output of the previous block, or bound the
signal with a Switch block.

• Specifications — If the model is supposed to work for specific input ranges, you can
provide these ranges using block parameters or the base workspace. The next
verification will read these ranges from the model, and the check will be green.

Specify Signal Ranges
If you constrain the input signals in your Simulink model, Polyspace verifies the generated
code for these inputs. The Overflow check is green in the verification results.

To specify signal ranges using source block parameters:

1 Double-click the In1 source block in your model. The Source Block Parameters dialog
box opens.

2 Select the Signal Attributes tab.
3 Set the Minimum value for the signal to -15.
4 Set the Maximum value for the signal to 15.

8 Verifying Code Generated from Simulink Models

8-6

 Verify Code from a Simple Simulink Model

8-7

5 Click OK.
6 Using above steps, set the minimum values for the In2 block to -15 and maximum

value to 15.
7 Save your model as my_first_model_bounded.

Verify Updated Model
After changing the model, you must regenerate code and run verification again.

To regenerate code and rerun the verification:

1 From the Simulink model, select Code > C/C++ Code > Build Model.

The software generates code for the updated model.
2 Select Code > Polyspace > Verify Code Generated for > Model.

The software verifies the generated code.
3 Select Code > Polyspace > Open Results > For Generated Code, which opens

Polyspace Code Prover.

The Overflow check is now green. Polyspace verification shows that the generated
code does not have run-time errors.

See Also

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “Analyze Code Generated from Simulink Subsystem”

8 Verifying Code Generated from Simulink Models

8-8

Code Verification in IBM Rational
Rhapsody Environment

9

Verify Code in IBM Rational Rhapsody Environment
In this section...
“Code Verification Approach” on page 9-2
“Adding Polyspace Profile to Model” on page 9-3
“Accessing Polyspace Features” on page 9-3
“Configuring Verification Options” on page 9-6
“Running a Verification” on page 9-7
“Viewing Polyspace Results” on page 9-7
“Locating Faulty Code in Rhapsody Model” on page 9-8
“Template Configuration Files” on page 9-9

Note The Polyspace integration with the IBM Rational Rhapsody environment will be
removed after R2018b. To continue using the latest releases of Polyspace, run code
analysis in the Polyspace user interface or using scripts.

Code Verification Approach
In a collaborative Model-Driven Development (MDD) environment, software run-time
errors can be produced by either design issues in the model or faulty handwritten code.
You may be able to detect the flaws using code reviews and intensive testing. However,
these techniques are time-consuming and expensive.

With Polyspace Code Prover, you can verify C, C++ and Ada code that you generate from
your IBM Rational Rhapsody model (up to version 8.0 supported). As a result, you can
detect run-time errors and automatically identify model flaws quickly and early during the
design process.

For information about installing and using IBM Rational Rhapsody, go to
www-01.ibm.com/software/awdtools/rhapsody/.

The approach for using Polyspace Code Prover within the IBM Rational Rhapsody MDD
environment is:

• Integrate the Polyspace add-in with your Rhapsody project. See “Adding Polyspace
Profile to Model” on page 9-3.

9 Code Verification in IBM Rational Rhapsody Environment

9-2

http://www-01.ibm.com/software/awdtools/rhapsody/

• If required, specify Polyspace configuration options in the Polyspace verification
environment. See “Configuring Verification Options” on page 9-6.

• Specify the include path to your operating system (environment) header files and
run verification. See “Running a Verification” on page 9-7.

• View results, analyze errors, and locate faulty code within model. See “Viewing
Polyspace Results” on page 9-7 and “Locating Faulty Code in Rhapsody Model” on
page 9-8.

Adding Polyspace Profile to Model
Before you try to access Polyspace features, you must add the Polyspace profile to your
model. Polyspace is supported for Rhapsody 7.6, 8.0, and 8.1.

Note You cannot submit local batch verifications with Polyspace for Rhapsody (for
example, using local Parallel Computing Toolbox workers). If you want to submit local
batch verifications, use the Polyspace environment or the MATLAB command,
polyspaceCodeProver.

1 In the Rhapsody editor, select File > Add Profile to Model. The Add Profile to
Model dialog box opens.

2 Navigate to the folder MATLAB_Install\polyspace\plugin\rhapsody
\profiles\Polyspace.

3 Select the file Polyspace.sbs. Then click Open.

Now, if you right-click a package or file, you see the Polyspace item in the context menu.
Selecting Polyspace opens the Polyspace Verification dialog box.

Accessing Polyspace Features
To access Polyspace features in the Rhapsody editor:

1 Open the model that you want to verify. For example,
psdemos_uml_link_airbag.rpy in MATLAB_Install/polyspace/plugin/
rhapsody/psdemos.

 Verify Code in IBM Rational Rhapsody Environment

9-3

2 In the Entire Model View, expand the Packages node.
3 Right-click a package, for example, AirBagFiles.
4 From the context menu, select Polyspace.

The Polyspace Verification dialog box opens.

9 Code Verification in IBM Rational Rhapsody Environment

9-4

Through the Polyspace Verification dialog box, you can:

• Specify verification options. See “Configuring Verification Options” on page 9-6.
• Start a verification. See “Running a Verification” on page 9-7.
• Stop a local verification. See “Running a Verification” on page 9-7.
• View verification results. See “Viewing Polyspace Results” on page 9-7.

 Verify Code in IBM Rational Rhapsody Environment

9-5

• Open help.
• Open the Polyspace Job Monitor. See “Running a Verification” on page 9-7.

Configuring Verification Options
To specify options for your verification:

1 In the Entire Model View, right-click a package or class, for example,
AirbagControl.

2 From the context menu, select Polyspace.
3 In the Polyspace Verification dialog box, click Configure. The Configuration pane of

the Polyspace verification environment opens.
4 Select options for your verification. In particular, you must specify the following:

• Target & Compiler > Compiler (-compiler)
• Target & Compiler > Environment Settings > Include (-include) — Path to

your operating system (environment) header files.
• Distributed Computing > Batch (-include) — For local verification, clear the

check box. For remote verification, select the check box.
5 To save your options, on the toolbar, click .

For information on how to choose your options, see “Analysis Options”.

9 Code Verification in IBM Rational Rhapsody Environment

9-6

Running a Verification
Before starting a verification, make sure that the generated code for the model is up to
date.

To start a verification:

1 In the Rhapsody editor, select Tools > Polyspace. The Polyspace Verification dialog
box opens.

2 In the Results folder field, specify a location for your verification results.
3 Select the Verification mode. Click Class or File. If you click Class, from the Class

to verify drop-down list, select a specific class. In addition, under Verify with
(highlight classes), you can select other classes from the displayed list.

4 If you want to run the analysis on your Polyspace server, select Send to Polyspace
server.

Note If you are performing local batch verification with Polyspace for Rhapsody,
MATLAB Distributed Computing Server, and Parallel Computing Toolbox, you can
only submit local batch analyses from the Polyspace environment or using the
command.

5 Click Run. In the Log view of the Rhapsody editor, you see verification messages.

If your verification is local, you can observe progress in the Log view of the Rhapsody
editor. To stop the local verification, in the Polyspace Verification dialog box, click Stop.

To stop or monitor a batch verification, use the Job Monitor.

Viewing Polyspace Results
To view results from the last local verification:

1 In the Rhapsody editor, select Tools > Polyspace.
2 In the Polyspace Verification dialog box, click Open Results.

The software displays results in the Polyspace user interface.

To view results from remote verifications, use Polyspace Metrics or the Job Monitor.

For more information, see “Review Analysis Results”.

 Verify Code in IBM Rational Rhapsody Environment

9-7

Declarations for C Functions Without Arguments

By default, Rhapsody generates declarations for functions without parameters, using the
form:

void my_function()

rather than:

void my_function(void)

This can result in the following Polyspace compilation error:

Fatal error: function 'my_function' has unknown prototype.

To avoid this problem, in Rhapsody, at the project level, set the property
C_CG::Configuration::EmptyArgumentListName to void.

Locating Faulty Code in Rhapsody Model
To identify the faulty code within your Rhapsody model using Polyspace verification
results:

1 In your verification results, navigate to an error.
2 In the Source pane, right-click the error. From the context menu, select Back To

Model.

Tip For the Back To Model command to work, you must have your Rhapsody model
open.

The Back To Model command works best when the Polyspace check is enclosed by
the tags //#[and]#//.

The software locates the faulty code within your Rhapsody model. Depending on the
Rhapsody configuration, the faulty code appears either in a dialog box or in the code
view.

The 64-bit version of the Polyspace product supports the Back To Model command
only for version 8.0 of the IBM Rational Rhapsody product. For other versions, use
the 32-bit Polyspace version.

9 Code Verification in IBM Rational Rhapsody Environment

9-8

To install the 32-bit Polyspace version, from a DOS command window, run the
following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Template Configuration Files
• “Using Template Configuration Files” on page 9-9
• “Default Configuration Options” on page 9-9

Using Template Configuration Files

The first time you perform a verification, the software copies a template, Polyspace
configuration file, from matlabroot/polyspace/plugin/rhapsody/etc/
template_language.psprj to the project folder. The software also renames the copy
model_language.psprj, where:

• model is the name of your model.
• language is the name of the language that the model targets, that is, C or C++.

You can update the template .psprj file by one of the following means:

• Editing it through the Polyspace verification environment
• Double-clicking the file in a Windows Explorer window
• Replacing the template file with a copy of the .psprj file from a Rhapsody model

folder

You can then share a configuration among project members and use the configuration
with other projects.

Default Configuration Options

The template_language.psprj XML files specify the default option values for code
verification.

The file template_C.psprj is:
<?xml version="1.0" encoding="UTF-8"?>
<polyspace_project name="template_psprj" language="C" author="polyspace"
version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common
/Rhapsody/PolyspaceUMLLink/etc/template_C.psprj">
 <source>
 </source>

 Verify Code in IBM Rational Rhapsody Environment

9-9

 <include>
 </include>
 <module name="Verification_1" isactive="true">
 <source>
 </source>
 <optionset name="template_psprj" isactive="true">
 <option flagname="-respect-types-in-fields">true</option>
 <option flagname="-respect-types-in-globals">true</option>
 </optionset>
 </module>
</polyspace_project>

The file template_C++.psprj is:
<?xml version="1.0" encoding="UTF-8"?>
<polyspace_project name="template_psprj" language="C++" author="polyspace"
version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common
/Rhapsody/PolyspaceUMLLink/etc/template_C++.psprj">
 <source>
 </source>
 <include>
 </include>
 <module name="Verification_1" isactive="true">
 <source>
 </source>
 <optionset name="template_psprj" isactive="true">
 <option flagname="-D">[OM_NO_FRAMEWORK_MEMORY_MANAGER]</option>
 <option flagname="-dialect">gnu</option>
 <option flagname="-respect-types-in-fields">true</option>
 <option flagname="-respect-types-in-globals">true</option>
 <option flagname="-target">i386</option>
 </optionset>
 </module>
</polyspace_project>

9 Code Verification in IBM Rational Rhapsody Environment

9-10

Using Bug Finder and Code Prover

10

Differences Between Polyspace Bug Finder and
Polyspace Code Prover Analysis

Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static
analysis. Though the products have a similar user interface and the mathematics
underlying the analysis can sometimes be the same, the goals of the two products are
different.

Bug Finder quickly analyzes your code and detects many types of defects. Code Prover
checks every operation in your code for a set of possible run-time errors and tries to
prove the absence of the error for all execution paths1. For instance, for every division in
your code, a Code Prover analysis tries to prove that the denominator cannot be zero. Bug
Finder does not perform such exhaustive verification. For instance, Bug Finder also
checks for a division by zero error, but it might not find all operations that can cause the
error.

The two products involve differences in setup, analysis and results review, because of this
difference in objectives. In the following sections, we highlight the primary differences
between a Bug Finder and a Code Prover analysis (also known as verification). Depending
on your requirements, you can incorporate one or both kinds of analyses at appropriate
points in your software development life cycle.

How Bug Finder and Code Prover Complement Each Other
• “Overview” on page 10-3
• “Faster Analysis with Bug Finder” on page 10-3
• “More Exhaustive Verification with Code Prover” on page 10-3
• “More Specific Defect Types with Bug Finder” on page 10-4
• “Easier Setup Process with Bug Finder” on page 10-5
• “Fewer Runs for Clean Code with Bug Finder” on page 10-5
• “Results in Real Time with Bug Finder” on page 10-6
• “More Rigorous Data and Control Flow Analysis with Code Prover” on page 10-6
• “Few False Positives with Bug Finder” on page 10-8

1. For each operation in your code, Code Prover considers all execution paths leading to the operation that
do not have a previous error. If an execution path contains an error prior to the operation, Code Prover
does not consider it. See “Code Prover Analysis Following Red and Orange Checks”.

10 Using Bug Finder and Code Prover

10-2

• “Zero False Negatives with Code Prover” on page 10-8

Overview

Use both Bug Finder and Code Prover regularly in your development process. The
products provide a unique set of capabilities and complement each other. For possible
ways to use the products together, see “Workflow Using Both Bug Finder and Code
Prover” on page 10-8.

This table provides an overview of how the products complement each other. For details,
see the sections below.

Feature Bug Finder Code Prover
Number of checkers 225 28 (Critical subset)
Depth of analysis Fast.

For instance:

• Faster analysis.
• Easier set up and review.
• Fewer runs for clean

code.
• Results in real time.

Exhaustive.

For instance:

• All operations of a type
checked for certain
critical errors.

• More rigorous data and
control flow analysis.

Reporting criteria Probable defects Proven findings
Bug finding criteria Few false positives Zero false negatives

Faster Analysis with Bug Finder

How much faster the Bug Finder analysis is depends on the size of the application. The
Bug Finder analysis time increases linearly with the size of the application. The Code
Prover verification time increases at a rate faster than linear.

One possible workflow is to run Code Prover to analyze modules or libraries for
robustness against certain errors and run Bug Finder at integration stage. Bug Finder
analysis on large code bases can be completed in a much shorter time, and also find
integration defects such as Declaration mismatch and Data race.

More Exhaustive Verification with Code Prover

Code Prover tries to prove the absence of:

 Differences Between Polyspace Bug Finder and Polyspace Code Prover Analysis

10-3

• Division by Zero error on every division or modulus operation
• Out of Bounds Array Index error on every array access
• Non-initialized Variable error on every variable read
• Overflow error on every operation that can overflow

and so on.

For each operation:

• If Code Prover can prove the absence of the error for all execution paths, it highlights
the operation in green.

• If Code Prover can prove the presence of a definite error for all execution paths, it
highlights the operation in red.

• If Code Prover cannot prove the absence of an error or presence of a definite error, it
highlights the operation in orange. This small percentage of orange checks indicate
operations that you must review carefully, through visual inspection or testing. The
orange checks often indicate hidden vulnerabilities. For instance, the operation might
be safe in the current context but fail when reused in another context.

You can use information provided in the Polyspace user interface to diagnose the
checks. See “More Rigorous Data and Control Flow Analysis with Code Prover” on
page 10-6. You can also provide contextual information to reduce unproven code
even further, for instance, constrain input ranges externally.

Bug Finder does not aim for exhaustive analysis. It tries to detect as many bugs as
possible and reduce false positives. For critical software components, running a bug
finding tool is not sufficient because despite fixing all defects found in the analysis, you
can still have errors during code execution (false negatives). After running Code Prover
on your code and addressing the issues found, you can expect the quality of your code to
be much higher. See “Zero False Negatives with Code Prover” on page 10-8.

More Specific Defect Types with Bug Finder

Code Prover checks for types of run-time errors where it is possible to mathematically
prove the absence of the error. In addition to detecting errors whose absence can be
mathematically proven, Bug Finder also detects other defects.

For instance, the statement if(a=b) is semantically correct according to the C language
standard, but often indicates an unintended assignment. Bug Finder detects such
unintended operations. Although Code Prover does not detect such unintended
operations, it can detect if an unintended operation causes other run-time errors.

10 Using Bug Finder and Code Prover

10-4

Examples of defects detected by Bug Finder but not by Code Prover include good practice
defects (Polyspace Bug Finder), resource management defects (Polyspace Bug Finder),
some programming defects (Polyspace Bug Finder), security defects (Polyspace Bug
Finder), and defects in C++ object oriented design (Polyspace Bug Finder).

For more information, see:

• “Defects” (Polyspace Bug Finder): List of defects that Bug Finder can detect.
• “Run-Time Checks”: List of run-time errors that Code Prover can detect.

Easier Setup Process with Bug Finder

Even if your code builds successfully in your compilation toolchain, it can fail in the
compilation phase of a Code Prover verification. The strict compilation in Code Prover is
related to its ability to prove the absence of certain run-time errors.

• Code Prover strictly follows the ANSI® C99 Standard, unless you explicitly use
analysis options that emulate your compiler.

To allow deviations from the ANSI C99 Standard, you must use the options. If you
create a Polyspace project from your build system, the options are automatically set.

• Code Prover does not allow linking errors that common compilers can permit.

Though your compiler permits linking errors such as mismatch in function signature
between compilation units, to avoid unexpected behavior at run time, you must fix the
errors.

For more information, see “Troubleshoot Compilation and Linking Errors”.

Bug Finder is less strict about certain compilation errors. Linking errors, such as
mismatch in function signature between different compilation units, can stop a Code
Prover verification but not a Bug Finder analysis. Therefore, you can run a Bug Finder
analysis with less setup effort. In Bug Finder, linking errors are often reported as a defect
after the analysis is complete.

Fewer Runs for Clean Code with Bug Finder

To guarantee absence of certain run-time errors, Code Prover follows strict rules once it
detects a run-time error in an operation. Once a run-time error occurs, the state of your
program is ill-defined and Code Prover cannot prove the absence of errors in subsequent
code. Therefore:

 Differences Between Polyspace Bug Finder and Polyspace Code Prover Analysis

10-5

• If Code Prover proves a definite error and displays a red check, it does not verify the
remaining code in the same block.

Exceptions include checks such as Overflow, where the analysis continues with the
result of overflow either truncated or wrapped around.

• If Code Prover suspects the presence of an error and displays an orange check, it
eliminates the path containing the error from consideration. For instance, if Code
Prover detects a Division by Zero error in the operation 1/x, in the subsequent
operation on x in that block, x cannot be zero.

• If Code Prover detects that a code block is unreachable and displays a gray check, it
does not detect errors in that block.

For more information, see “Code Prover Analysis Following Red and Orange Checks”.

Therefore, once you fix red and gray checks and rerun verification, you can find more
issues. You need to run verification several times and fix issues each time for completely
clean code. The situation is similar to dynamic testing. In dynamic testing, once you fix a
failure at a certain point in the code, you can uncover a new failure in subsequent code.

Bug Finder does not stop the entire analysis in a block after it finds a defect in that block.
Even with Bug Finder, you might have to run analysis several times to obtain completely
clean code. However, the number of runs required is fewer than Code Prover.

Results in Real Time with Bug Finder

Bug Finder shows some analysis results while the analysis is still running. You do not
have to wait until the end of the analysis to review the results.

Code Prover shows results only after the end of the verification. Once Bug Finder finds a
defect, it can display the defect. Code Prover has to prove the absence of errors on all
execution paths. Therefore, it cannot display results during analysis.

More Rigorous Data and Control Flow Analysis with Code Prover

For each operation in your code, Code Prover provides:

• Tooltips showing the range of values of each variable in the operation.

For a pointer, the tooltips show the variable that the pointer points to, along with the
variable values.

• Graphical representation of the function call sequence that leads to the operation.

10 Using Bug Finder and Code Prover

10-6

By using this range information and call graph, you can easily navigate the function call
hierarchy and understand how a variable acquires values that lead to an error. For
instance, for an Out of Bounds Array Index error, you can find where the index variable
is first assigned values that lead to the error.

When reviewing a result in Bug Finder, you also have supporting information to
understand the root cause of a defect. For instance, you have a traceback from where Bug
Finder found a defect to its root cause. However, in Code Prover, you have more complete
information, because the information helps you understand all execution paths in your
code.

Data Flow Analysis in Code Prover

 Differences Between Polyspace Bug Finder and Polyspace Code Prover Analysis

10-7

Control Flow Analysis in Code Prover

Few False Positives with Bug Finder

Bug Finder aims for few false positives, that is, results that you are not likely to fix. By
default, you are shown only the defects that are likely to be most meaningful for you.

Bug Finder also assigns an attribute called impact to the defect types based on the
criticality of the defect and the rate of false positives. You can choose to analyze your
code only for high-impact defects. You can also enable or disable a defect that you do not
want to review2.

Zero False Negatives with Code Prover

Code Prover aims for an exhaustive analysis. The software checks every operation that
can trigger specific types of error. If a code operation is green, it means that the
operation cannot cause those run-time errors that the software checked for3. In this way,
the software aims for zero false negatives.

If the software cannot prove the absence of an error, it highlights the suspect operation in
red or orange and requires you to review the operation.

Workflow Using Both Bug Finder and Code Prover
If you have both Bug Finder and Code Prover, based on the above differences, you can
deploy the two products appropriately in your software development workflow. For
instance:

2. You can also disable certain Code Prover defects related to non-initialization.
3. The Code Prover result holds only if you execute your code under the same conditions that you supplied

to Code Prover through the analysis options.

10 Using Bug Finder and Code Prover

10-8

• All developers in your organization can run Bug Finder on newly developed code. For
maintaining standards across your organization, you can deploy a common
configuration that looks only for specific defect types.

Code Prover can be deployed as part of your unit testing suite.
• You can run Code Prover only on critical components of your project, while running

Bug Finder on the entire project.
• You can run Code Prover on modules of code at the unit testing level, and run Bug

Finder when integrating the modules.

You can run Code Prover before unit testing. Code Prover exhaustively checks your
code and tries to prove the presence or absence of errors. Instead of writing unit tests
for your entire code, you can then write tests only for unproven code. Using Code
Prover before unit testing reduces your testing efforts drastically.

Depending on the nature of your software development workflow and available resources,
there are many other ways you can incorporate the two kinds of analysis. You can run
both products on your desktop during development or as part of automated testing on a
remote server. Note that it is easier to interpret and fix bugs closer to development. You
will benefit from using both products if you deploy them early and often in your
development process.

There are two important considerations if you are running both Bug Finder and Code
Prover on the same code.

• Both products can detect violations of coding rules such as MISRA C rules and JSF® C
++ rules.

However, if you want to detect MISRA C:2012 coding rule violations alone, use Bug
Finder. Bug Finder supports all the MISRA C:2012 coding rules. Code Prover does not
support a few rules.

• If a result is found in both a Bug Finder and Code Prover analysis, you can comment
on the Bug Finder result and import the comment to Code Prover.

For instance, most coding rule checkers are common to Bug Finder and Code Prover.
You can add comments to coding rule violations in Bug Finder and import the
comments to the same violations in Code Prover. To import comments, open your
result set and select Tools > Import Comments.

• You can use the same project for both Bug Finder and Code Prover analysis. The
following set of options are common between Bug Finder and Code Prover:

 Differences Between Polyspace Bug Finder and Polyspace Code Prover Analysis

10-9

• “Target and Compiler”
• “Macros”
• “Environment Settings”
• “Inputs and Stubbing”
• “Multitasking”
• “Coding Rules & Code Metrics”
• “Reporting”, except Bug Finder and Code Prover report (-report-

template)

You might have to change more of the default options when you run the Code Prover
verification because Code Prover is stricter about compilation and linking errors.

10 Using Bug Finder and Code Prover

10-10

